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Materials and Methods 

 

Experimental Design 

The purpose of this study was to test the effectiveness of a method for automatic 

identification of exoskeleton assistance patterns that minimize the metabolic energy used 

in human walking. We performed two sets of experiments: The main study was designed 

to test the effectiveness of the method across a range of individuals. A series of additional 

studies with single-subject design were used to test the effectiveness of the method across 

gait conditions, devices and objectives. 

Eleven healthy individuals participated in the main study. Participants wore a 

torque-controlled, tethered exoskeleton on one ankle. The exoskeleton applied torque as a 

function of time when the foot was on the ground, defined by four control parameters that 

set the magnitude of peak torque, the timing of peak torque, the rise time and the fall time, 

constituting a control law. During the optimization phase of the experiment, a Covariance 

Matrix Adaptation Evolution Strategy (CMA-ES) was used to identify the control law 

that minimized the metabolic energy cost of walking for each participant. The metabolic 

rate corresponding to each control law was estimated by fitting a first-order model to two 

minutes of breath-by-breath respiratory data. CMA-ES settings, such as the number of 

control laws per generation (eight) and stopping criteria (typically four generations), were 

based on either the literature or the results of pilot testing. The mean of the final 

calculated generation was taken as the optimized control law. Separate validation trials 

with a double-reversal design were then conducted to compare optimized assistance to 

two baseline conditions: walking with the exoskeleton in a zero-torque mode and walking 

with a static controller from a prior experiment. In a subset of participants, additional 

tests were applied to check for convergence. The primary study outcomes were the 

differences in metabolic rate between the optimized condition and the zero-torque and 

static conditions. Two paired t-tests formed the corresponding primary statistical analysis. 

Secondary outcomes included the nature of the optimized assistance patterns and 

differences in metabolic rate between additional conditions and participant sub-groups, 

which were analyzed using paired or unpaired t-tests as appropriate. 

Seven different conditions were tested in additional studies with single-subject 

design. Methods for these studies were similar to those of the main study, but included 

conditions with exoskeletons worn on both ankles, walking at slow, normal and fast 

speeds, walking uphill, walking while carrying a heavy load, and running. A final test 

optimized muscle activity rather than energy expenditure. 

 

Participants in the Main Study 

Eleven healthy adults (N = 11, 5 female and 6 male; age = 27.2 ± 4.2 [24-37] years; 

body mass = 69.6 ± 14.1 [50-93] kg; height = 1.75 ± 0.10 [1.60-1.88] m; mean ± standard 

deviation [range]; table S1) participated in the study. One additional participant dropped 

out before completing the protocol, in part owing to hardware malfunctions. Sample size 

was chosen on the basis of data from previous studies. All participants provided written 

informed consent before participation, after the nature and possible consequences of the 

study were explained. The study protocol was approved and overseen by the Institutional 

Review Board of Carnegie Mellon University. 
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Exoskeleton Hardware in the Main Study 

We used a tethered, one degree-of-freedom, torque-controlled ankle exoskeleton 

emulator (30) to apply ankle torques. Participants walked on a treadmill while wearing 

the exoskeleton on their right ankle. The primary reason for using this unilateral 

exoskeleton was to allow comparisons to a prior study with the same hardware (17). This 

choice also resulted in a simpler experimental protocol compared to tests with bilateral 

exoskeletons; fewer components needed maintenance, electromechanical failure during 

testing was less likely, and less time was required for users to put the exoskeleton on and 

take it off. We suspect that this choice made balance easier and reduced leg interference 

during swing, at a cost of less total assistance, but did not test these effects directly.  

The ankle exoskeleton emulator is composed of an off-board control module and 

electric motor; a uni-directional Bowden cable transmission with a series leaf spring; and 

an exoskeleton frame that interfaces with the human foot and shank (cf. Fig. 2C; fig. S2).  

The emulator used a high-speed control system (ACE1103, dSPACE) to sample 

sensors at 5000 Hz, filter sensor data at 200 Hz, and generate commands of desired motor 

velocity at 500 Hz. The motor unit included a low-inertia, 1.6 kW AC servo motor and a 

5:1 planetary gear (BSM90N-175AD and GBSM90-MRP120-5, Baldor Electric). Motor 

input voltage was regulated by a driver running in velocity control mode 

(MFE460A010B, Baldor Electric). A digital optical encoder measured motor position 

(E8P, US Digital). The 100% rise time to peak motor velocity was 0.013 s.  

A flexible, uni-directional Bowden cable was used as the transmission between the 

off-board motor and the exoskeleton end-effector worn on the leg. The cable was 

composed of a coiled-steel outer conduit (415310-00, Lexco Cable) and a 0.003 m 

diameter Vectran® inner rope, and was approximately 2 m in length. A custom leaf 

spring (fabricated from GC-67-UB fiberglass, Gordon Composites, Inc.) was attached at 

the end of the rope in series with the ankle joint to provide increased transmission 

compliance. This series-elastic transmission decoupled motor inertia from the 

exoskeleton and reduced interface impedance between the human and robotic portions of 

the system, thus improving torque tracking, comfort and safety. In the zero-torque mode, 

the cable was kept slack so as to transmit no forces to the user. 

The exoskeleton end-effector applied forces on the front of the human shank below 

the knee, beneath the heel, and on the ground beneath the toe (cf. Fig. 2D; fig. S3). This 

generated the equivalent of an ankle plantarflexion torque, with torque magnitude 

proportional to transmission cable tension. Torque was measured using a load cell 

(LC201 Series; OMEGA Engineering) conditioned at 1000 Hz (CSG110, Futek). Joint 

angle was measured using a digital optical encoder (E8P, US Digital). The ankle 

exoskeleton has a peak allowable torque of 120 N m and weighs 0.83 kg. 

Low-level exoskeleton torque was controlled using a combination of proportional 

control, damping injection, and iterative learning, with motor velocity commanded to the 

motor driver (31, 43). This low-level torque control approach does not rely on explicit 

models or integration, which makes it well-suited to the nonlinear, complex and time-varying 

dynamics of a human interacting with an exoskeleton during walking. Iteratively-learned 

feed-forward compensation mitigated steady-state errors by exploiting the cyclic nature of 

walking. With this low-level torque control approach, real-time torque tracking errors during 

walking can be as low as 1% of peak torque at steady state (31, 43). 
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Control Law Parameterization in the Main Study 

We tested the optimization method on a control law that determined desired ankle 

exoskeleton torque as a function of the time since ground contact, normalized to stride 

period. Four control parameters defined peak torque, the time of peak torque, the rise 

time and the fall time for a curve comprising two cubic splines. Additional low-torque 

ramp-in and ramp-out patterns were included for the rest of the stance phase to improve 

torque tracking. Stride period was estimated online by low-pass filtering measured stride 

periods during walking. 

The ankle torque curve had a hill-like shape that can be divided into four sections: a 

shallow, low-torque setup ramp; a rising s-like cubic spline linking the onset point to the 

peak; a falling arc-like cubic spline linking the peak to the removal point; and a shallow, 

low-torque settling ramp. The shape was primarily defined by four parameters: peak 

torque,
p , peak time, 

pt , rise time, rt , and fall time,
ft . Additional constant settings fully 

defined the shape. First, the desired torque at the beginning of the stride, defined as the 

instant of heel strike, was zero. Second, the desired torque at 65% of the stride period, 

which is typically slightly after toe-off, was zero. Third, at both torque onset and torque 

removal we enforced a small desired torque value, 2 N m, rather than zero. This avoided 

instability caused by torque measurement errors while tracking zero torque with a 

unidirectional cable transmission. Fourth, the slopes of the cubic splines at the onset and 

peak points were zero. Finally, the second derivative of the cubic spline at the removal 

point was zero. These constraints and the four parameters uniquely determined the torque 

at all instants during the stance period from heel strike to toe off. As soon as the foot 

came off the ground, a zero-torque ‘swing mode’ was applied by maintaining a small 

amount of slack in the cable. 

We now define the shape of the stance-phase torque curve more precisely. We will 

use time-torque coordinates of the form [X%, Y N m], where X is time, normalized to 

percent stride, and Y is torque magnitude. During setup, desired torque was linearly 

interpolated between heel strike, [0%, 0 N m], and onset, [ ( )rpt t %, 2 N m]. Similarly, 

in the settling section, desired torque was linearly interpolated between torque removal, 

[ ( )fpt t %, 2 N m], and 65% of stride time, [65%, 0 N m]. If the user was still in the 

stance phase after 65% of the stride period, desired torque remained zero. 

In the rising and falling cubic spline sections, desired torque was defined by two 

cubic splines, one from torque onset, [ ( )rpt t %, 2 N m], to peak, [ pt %, p N m], and 

one from peak to removal [ ( )fpt t %, 2 N m]. Let the two splines be represented by 

  

 

3 2

1 1 1 1 1

3 2

2 2 2 2 2

( )
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t a t b t c t d




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where 𝑡 denotes the time elapsed since heel strike in the current stride, as a percentage of 

the stride period. ia , ib , ic , and id  ( 1 or 2)i   are the eight parameters to be set. From the 

definitions above, we have 
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Solving this set of coupled equations gives us two unique cubic splines between torque 

onset and removal. 

We used limits determined in pilot tests to set constraints on the four control 

parameters that defined the pattern of ankle torque. The maximum value of peak torque 

was 1 N m kg
-1

, or one Newton meter for each kilogram of participant body mass. This 

reduced the likelihood of discomfort in cases with unusual timing. The lower bound on 

peak torque was 2 N m, which was the minimum value that could be tracked reliably. The 

rise time was constrained to between 10% and 40% of the stride period and the fall time 

was constrained to between 5% and 20% of the stride period. The lower limits on rise and 

fall times were chosen to avoid poor low-level torque tracking during rapid changes in 

desired torque. The upper limits were chosen to avoid discomfort associated with large 

torque impulses when peak torque was also high. Fall time limits were set to lower values 

than rise time limits based on the observation in pilot tests that faster drops in torque were 

tolerated better by the low-level controller while slower drops in desired torque were 

tolerated less well by the user. The time of peak torque was constrained to between 10% 

and 50-55% of stride, with the upper limit dependent on the magnitude of peak torque. 

When the magnitude of peak torque was 0.75 N m kg
-1

 or lower, the upper limit on time 

of peak torque was 55% of stride. As peak torques increased from 0.75 N m kg
-1

 to 1 N m 

kg
-1

, the upper limit decreased from 55% to 50% of stride. This choice was made based 

on pilot testing, in which we observed that large, rapid drops in torque very late in the 

stance phase became uncomfortable for some participants. Given the approximate nature 

of these hand-selected parameter constraints, it is possible that a larger solution space 

could be achieved with further refinement. Sample code that takes parameter values, 

applies the above constraints and generates the resulting torque curves can be found in 

Optimization Code in the Supplementary Materials. 

 

Online Optimization Strategy 

We used a Covariance Matrix Adaptation Evolution Strategy (CMA-ES; 28) to 

identify the exoskeleton control laws that minimized the metabolic cost of walking for 

each participant. CMA-ES is stochastic, does not explicitly use derivative terms, and is 

often used for non-linear, non-convex optimization problems. The method is well-suited 

to human-in-the-loop optimization because it addresses noisy measurements, expensive 

objective function evaluations, nonlinear objective functions with unknown structures, 

and complex, subject-dependent human learning and adaptation processes. We did not 
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apply an exhaustive set of potential optimization strategies in simulations or pilot tests, 

but CMA-ES was by far the most effective of those strategies we did test. Here we 

provide an overview of the algorithm and rationale for its use in our method human-in-

the-loop optimization. 

CMA-ES first evaluates a group of candidate parameter sets which form the 

population of one generation. Candidate parameter sets are randomly selected according 

to a multivariate normal distribution of the parameters, characterized by a mean, a 

covariance matrix and a standard deviation. The mean of the distribution represents the 

current estimate of the optimal parameter values. After evaluating the current generation, 

the parameter sets are ranked in terms of performance and a rank-weighted average of the 

best sets becomes the mean of the next generation. The change in means is used to update 

the covariance matrix of the next generation, while additional multi-generational terms 

refine the covariance matrix and standard deviation to improve computational efficiency. 

This process is repeated from generation to generation to imitate natural selection. The 

mean of the final calculated generation serves as the best estimate of the optimal 

parameter values. 

We chose CMA-ES based on simulations of the human-in-the-loop optimization 

problem and pilot-tests of candidate optimization strategies, which we derived from the 

literature. Optimizing multivariate exoskeleton and prosthesis assistance conditions from 

human metabolic rate measurements is challenging in multiple ways. First, metabolic rate 

is noisy, owing both to complicated human physiological and biochemical dynamics and to 

shortcomings in respiratory measurement hardware. CMA-ES is stochastic, which makes it 

less sensitive to noise than derivative-based methods such as gradient descent (44) and 

‘hill-climbing’ methods such as Nelder-Mead (45). 

A second challenge is that evaluation of candidate conditions is very expensive in 

terms of time and human effort. Measurement of metabolic rate requires on the order of 

minutes of respiratory data from a human interacting with the device, due to delays in the 

expression of energy used by muscles in expired gases (46). Often, multivariate 

optimization methods require a large number of function evaluations per step, and this 

number increases with the dimensionality of the control parameter space. For example, a 

quadratic approximation requires at least 1 + 2n evaluations assuming no interactions and 

1 + 2n + 0.5(n
2
 – n) evaluations including interactions, making it either O(n) or O(n

2
), 

where n is the number of parameters being optimized. Gradient calculations and 

surrogate-based methods are similarly O(n) or greater. In benchmarking problems, the 

CMA-ES method requires 4 + floor(3 ln(n)) evaluations per generation (47), making it 

potentially O(ln(n)). In a forty-dimensional parameter space, for example, a full quadratic 

approximation would require at least 861 evaluations, while CMA-ES might use as few 

as 15 per generation, although this scaling might not hold in an adapting landscape and 

we did not test scaling in this study. 

A third challenge is that the nature of the relationship between exoskeleton and 

prosthesis control parameters and human metabolic rate is not known in advance and may 

include complex nonlinearities and local minima. CMA-ES is stochastic and includes 

mechanisms to grow or shrink the standard deviation of the randomly-selected parameter 

values depending on the evolution of the mean over time. These features make CMA-ES 

robust against thresholds, discontinuities and local minima, as long as the initial values of 

the mean, covariance matrix, and standard deviation are well-chosen. 
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A fourth challenge is that humans exhibit complex, individualized learning and 

adaptation processes when using an exoskeleton or prosthesis. This puts gradient-based 

and quadratic approximation methods at a disadvantage, because calculating the gradient 

or Hessian requires substantial time, during which the human is changing. The calculated 

gradient or quadratic will therefore often be inaccurate, resulting in poor subsequent 

guesses at the optimal parameter values or requiring additional evaluations to recalculate 

the model of the space. CMA-ES is less sensitive to these problems because it uses only 

the rank order of the parameter sets, not the objective function values or their partial 

derivatives. This reduces the likelihood that, e.g., an early, poorly-adapted response to a 

potentially beneficial control law prevents movement of the mean in that direction. 

Human adaptation also presents challenges for methods that attempt to develop models of 

the space based on all available data, because data collected early in the adaptation 

process are likely to conflict with data from later in the process. The variant of CMA-ES 

used in this study updates the estimate of the optimal parameter values using only data 

from the current generation, reducing its sensitivity to erroneous, poorly-adapted 

responses. The covariance matrix update does have dependencies on the mean and 

covariance from prior generations, a feature that improves efficiency in time-invariant 

problems but might lead to reduced efficiency in human-in-the-loop optimization. 

 

Online Optimization Parameters in the Main Study 

In this study, we optimized four exoskeleton control parameters and therefore chose 

a population size of eight control laws per generation (using the previously described 

formula). This population size is intended to be robust and therefore applicable to a wide 

range of parameter spaces (28, 48). We aimed for four generations of optimization per 

participant, based on pilot tests suggesting that convergence was typically achieved in 

four generations or fewer. Four subjects experienced more or fewer generations of 

optimization (Optimization Trials; table S2). Parameter constraints were applied after the 

selection of control laws for each new generation. The optimized control law was defined 

by the final calculated (untested) mean parameter values. Note that this means 

participants never experienced the optimized control law during optimization. 

We re-parameterized the optimization problem to improve the initial guess of the 

distribution defined by the covariance matrix, based on the results of pilot testing. Pilot 

tests suggested that the peak time and fall time, in units of percent stride, had smaller 

comfortable ranges than rise time, in units of percent stride, and peak torque, in units of 

Newton meters. We therefore mapped the original parameters , ,[ ],p p r ft t t  into the space 

1 2 3 4[ ] [ 2 2, ], , , , ,p p r ft t t      and optimized on . 

We initialized the optimization with 1 2 3 4[ ] [0.55m,90, ,, 2, 5,20]     , where m is 

participant body mass in kilograms. For a typical subject with mass of 70 kg, this resulted 

in an initial guess of  [ ] [38 N m,  45%,  25%,  , 1, 0%],p p r ft t t  . The initial covariance 

matrix was set as the size-four identity matrix and the standard deviation was initialized 

to 10. In pilot tests, we found that these values typically allowed subjects to complete the 

first generation with relative comfort, while covering a sufficient portion of the parameter 

space so as to span some of the eventual optimal parameter values. An example of the 

CMA-ES code that was used in our method can be found as Optimization Code in the 

Supplementary Materials. 
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Metabolic Rate Estimation 

The metabolic rate corresponding to each exoskeleton control law was estimated by 

fitting a first-order dynamical model to two minutes of breath-by-breath metabolic 

measurements. We used an inverse dynamics approach similar to (22, 23), assuming a 

step change in actual metabolic rate with each change in control law. That is, we fit an 

exponential curve to measured metabolic rate and used the asymptote of this fit as our 

estimate of actual metabolic rate. The equations below detail the conversion from oxygen 

uptake and carbon dioxide production to metabolic rate, and the construction of the 

matrices used in the pseudoinverse operation for the least squares fit. 

Breath-by-breath rates of 2O  consumption and 2CO  production were measured using 

a wireless, portable respirometry system (Oxycon Mobile; CareFusion). Data were 

communicated to the optimizer on the exoskeleton emulator system by first capturing 

them using screen automation software (Sikuli) from values displayed on the screen of 

the metabolics computer and then transmitting them via a serial channel. 

Measured flow rates of 2O  and 2CO were converted to a respiratory response term, 

related to metabolic rate, using a common equation (49). Respiratory output was 

calculated as 2 2( ) 0.278 ( ) 0.07 )5 (y t VO t VCO t    , where ( )y t  is the respiratory 

response in Watts and 
2 ( )VO t  and 

2 ( )VCO t  are volumetric flow rates in mL min
-1

. At 

steady state, the average of this respiratory response is equal to the estimated metabolic 

rate. However, the respiratory response does not immediately reflect changes in actual 

metabolic rate during transient periods (46), such as the period following a change in 

exoskeleton control laws. During such phases, the governing dynamics can be 

approximated as a first-order linear system (22).  

We used an inverse-dynamics approach to estimate actual metabolic rate from noisy, 

transient respiratory response data. We treated actual metabolic rate,  E , as constant for 

each control law. A sequence of 𝑛 breath-by-breath respiratory responses were measured, 

   (1) (2) ( )y y y y n , at corresponding times,    (1) (2) ( )t t t t n , for each 

control law. We then modeled 𝑦 as related to E in time according to  

  
1

( ( ))y t E y t


    

in which 𝛿 denotes a time constant. These continuous dynamics can be discretized as 

  
( ) ( )

( 1)
dt i dt i

y i y i E


 


     (2) 

where   ( ) ( 1) ( )dt i t i t i     is the time difference between samples. We then have 

 
1

(1)

(2)

( )

y

y y
A

E

y n

 
 

        
 
 

  

in which 𝑦1 is a constant related to the initial respiratory response and matrix 2nA   is 

formed according to Eqn. 2 as follows. For 1i  , we initialize the matrix as (1,1) 1A   

and (1,2) 0A  . For [2,3, , ]i n , then we iteratively constructed the matrix as 
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( 1)
( ,1) ( 1,1)

( 1) ( 1)
( ,2) ( 1,2)

dt i
A i A i

dt i dt i
A i A i







 

 
  

  
   

  

Actual metabolic rate can then be estimated by 

 
1

ˆ

ˆ

y
A y

E


 

 
  

  

where A is the pseudoinverse of A , and 1ŷ  and 
ˆ
E  are estimates of the initial respiratory 

response and the actual steady-state metabolic rate. This estimate of metabolic rate was 

used as the cost function value associated with each control law during optimization. 

Sample metabolic rate estimation code can be found in Optimization Code in the 

Supplementary Materials. 

There are two important parameters in this estimation of metabolic rate: the time 

constant of the first-order dynamics and the duration of the evaluation of each control 

law. We used a time constant of 42 s, an average value identified in a previous study (22), 

because it fit pilot data well. To identify an appropriate estimation period, we collected 

data in multiple six-minute walking bouts, each with a different, constant control law. We 

defined true metabolic rate as the estimate obtained using all six minutes of data. We then 

investigated the relationship between the duration of shorter virtual trial periods and the 

error in estimated metabolic rate compared to the true value. As expected, longer trials 

resulted in lower errors. We picked an evaluation period of two minutes because it 

seemed to strike a good balance between estimation errors (an average of 4% error) and 

trial duration (fig. S1). Shorter or longer evaluation periods would be expected to result in 

more or less noise per evaluation, but also more or fewer evaluations per hour, 

respectively, either of which could prove more efficient overall. 

 

Optimization Trials in the Main Study 

Participants walked on the treadmill at a constant speed of 1.25 m s
-1

 while wearing 

the ankle exoskeleton on their right ankle in all tests. Participants first underwent a brief 

period of acclimation to the exoskeleton, in which peak torque was slowly increased from 

zero and they were advised to relax and not resist the device.  

During the optimization phase of the study, participants experienced at least four 

generations of control laws, each consisting of eight two-minute periods. Participants 

were instructed to finish all four generations without stopping, beginning with two 

minutes of walking in the zero-torque mode to increase their initial respiratory response. 

As needed, the protocol was paused to provide subjects with rest or to adjust hardware. In 

these cases, the optimization was paused and resumed from the same point, following 

another warmup period. Eight participants experienced all four generations in the same 

data collection session. For the other three participants, optimization was paused before 

the end of the fourth generation due to hardware failure and was resumed on a subsequent 

day. Eight participants completed four additional generations of optimization as a test of 

whether the optimization had converged. 

Four participants received more or less optimization to identify optimized assistance 

parameters. One participant (Subject 6) appeared to become trapped in a poor local 
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minimum due to unusual adaptation dynamics on the first day. We therefore reset the 

optimization and conducted an additional four generations of optimization on a second day. 

Validation trials were performed on both sets of optimized parameters on a third day. 

Another participant (Subject 10) appeared not to have converged after four generations and 

so was provided with an additional five generations of optimization. At the end of the ninth 

cumulative generation, it appeared that the participant was trapped in a poor local minimum. 

We therefore reset and conducted an additional four generations of optimization. Only the 

final optimized parameter values were included in validation. One participant (Subject 7) 

appeared to have converged at the end of three generations, and the mean from the fourth 

generation was used in validation trials. For one participant (Subject 8) we used the mean 

from the sixth generation in validation trials, rather than the fifth, due to experimenter error. 

Details of the experimental protocol for all participants are listed in table S2. 

 

Validation Trials in the Main Study 

In separate validation trials, we compared the metabolic cost of the optimized 

control law with two additional control conditions. In the ‘zero-torque’ condition, the 

unidirectional Bowden cable transmission of the exoskeleton was kept slack, thereby 

applying zero torque to the human ankle. This complete lack of torque was verified using 

load cell measurements. In the ‘static’ condition, we applied a pattern of torque that was 

found to reduce energy cost in a previous study (17). This condition is approximated by 

[ ] [0.82, , 5m, ,53,17,8]p p r ft t t  , where m is participant body mass. One participant 

(Subject 2) was provided with the static condition as [0.825m,53,25,10] due to 

experimenter error. This happened to cause the static condition to be closer to the 

optimized condition (table S3), which would be expected to result in lower metabolic rate 

in the static condition for this subject. We also included a quiet standing condition, in 

which participants stood at rest on the treadmill while wearing the exoskeleton. 

Metabolic rate from the standing condition was subtracted from gross metabolic rate in 

walking conditions to obtain the energy cost of walking for each condition. 

Validation trials were conducted in a double-reversal order. Each condition was 

tested twice, first in random order and then again in reverse order to mitigate the effects of 

adaptation or drift in respiratory measurements.  Three validation tests (Subject 2 day 1, 

Subject 8 day 2 and Subject 9 day 2) were conducted in which the middle condition was 

only tested once. However, the singly-tested condition occurred in the middle of the 

sequence, meaning that compensation for adaptation and drift were still realized.  

Validation trials were single-blind. Participants were not informed as to which 

exoskeleton condition they experienced, but it was necessary for one experimenter to be 

un-blinded to allow them to program the exoskeleton emulator appropriately.  

During validation trials, each condition was presented for six minutes. Steady-state 

metabolic rate was determined as the average value from the final three minutes of 

walking, the most accurate and commonly-used method (22). The metabolic rate for each 

condition was then obtained by averaging steady-state metabolic rate from both 

presentations. Finally, metabolic rate was normalized to body mass to partially account 

for differences in participant size, and is presented in units of W kg
-1

. 

For two participants, Subjects 2 and 8, static validation trials were conducted on a 

separate day from optimized validation trials. Day-to-day fluctuations in body chemistry and 

respirometry system calibration can result in differences in apparent oxygen consumption for 
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the same actual energy cost. To allow direct comparison of static and optimized conditions for 

these two participants, we normalized static metabolic rate to metabolic rate in the zero-torque 

condition, which is expected to be consistent across collection days; metabolic rate in the 

static condition was scaled by the ratio of metabolic rate in the zero-torque condition on the 

optimized validation day to that on the static validation day. Nearly identical results are 

obtained by either not accounting for day-to-day changes or by comparing the same-day 

percent changes. Comparisons between optimized and zero-torque conditions and between 

static and zero-torque conditions were unaffected, since zero-torque data were collected on the 

same day as optimized and static conditions for all participants.  

The metabolic cost of walking, used to compare the effectiveness of control laws in 

validation trials, was defined as the total metabolic rate minus the rate for quiet standing. 

This is often referred to as net metabolic rate. The metabolic rate for quiet standing was 

1.25 ± 0.20 W kg
-1

 in the main study. 

 

Statistical Analysis in the Main Study 

The two primary outcomes of this study are the change in metabolic rate with 

optimized assistance versus zero-torque, and the change in metabolic rate with optimized 

assistance versus static assistance. We designed the experiment to robustly identify these 

differences, and used two-sided, paired t-tests with N = 11 to obtain a measure of 

confidence (p-value) that the percent difference between these conditions was different 

from zero. We used a significance level of α = 0.05 to determine statistical significance. 

We used a Jarque-Bera test to verify that metabolic rate data were normally distributed 

across participants in each of the compared conditions.  

We also report metabolic cost data from a prior study (cf. Fig. 3B) to provide 

context for the primary results. In the previous study (17) the same hardware was used to 

apply the same zero-torque and static conditions on a different set of participants who did 

not undergo optimization. This provides a comparison point for the difference between 

zero-torque and static conditions in the present study, which suggests that facilitating 

human adaptation may have been an important factor in optimizing assistance. The prior 

study also included a condition not tested in the main study, in which no exoskeleton was 

worn. This comparison allows an inference to be made regarding the expected difference 

between optimized assistance and normal walking in the present study. Note that 

individual differences in metabolic cost between the two separate study participant 

groups led to differences in mean metabolic cost for the zero-torque condition, as well as 

large standard deviations for all conditions in both studies. This is a common feature of 

metabolic rate data, arising from physiological and neurological differences between 

individual humans. Differences in metabolic rate between conditions obtained for the 

same participant during the same collection period, however, are much more consistent, 

evident from participant-wise results in the present study (fig. S5; table S3). No statistical 

analyses were applied comparing the results of the two studies. 

We made qualitative comparisons of optimized control law parameter values across 

participants. Optimized parameter values are presented in a box plot (cf. Fig. 3C), with 

whiskers indicating the range of optimized values and the median line showing typical 

optimized values. In the box plot, optimized parameter values are normalized to the 

allowable range set by the parameter constraints defined above. We also present the average 

measured torque with optimized assistance for each participant (cf. Fig. 3D). For each 
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participant, measured torque for each stride was normalized in time to percent stride and 

then averaged across all strides in one of the optimized assistance conditions from validation 

trials. The same process was used to calculate the average measured torque in the static and 

zero-torque conditions, with the result then averaged across all participants (cf. Fig. 3E). 

We performed comparisons of a number of secondary outcomes, with preliminary 

observations intended to provide insights to inform future studies. Here, ‘change in 

metabolic rate’ refers to the difference in metabolic rate versus the zero-torque condition. 

For the subset of participants (N=8) who finished an additional four generations of 

optimization, the ‘convergence check’, we compared the change in metabolic rate with 

optimized assistance to the change in metabolic rate with convergence-check assistance 

using a paired t-test (fig. S9). We compared change in metabolic rate for participants who 

had prior experience with an exoskeleton (N = 5) to change in metabolic rate for 

participants with no prior experience (N = 6) using an unpaired t-test (fig. S10). We also 

looked for a correlation between exoskeleton mechanical work and human metabolic rate 

using linear regression, and report R
2
 value as a measure of explained variance (fig. S11).  

 

Estimate of Autonomous Device Mass 

The net effect on performance resulting from use of an autonomous exoskeleton can 

only be determined with certainty by building and testing that device. Assistance from 

motors can reduce energy cost, but carrying the mass of the motors and batteries can 

increase energy cost (50) forming an initial penalty. Streamlining the device for one 

specialized purpose can decrease this initial penalty compared to a general-purpose 

emulator, leading to a greater net benefit. Removing tethers can also reduce resistance to 

natural leg motions, an important component of economical gait (51). The interactions 

between the initial penalty, the assistance pattern, and the design of the autonomous 

device can be complicated. However, we can obtain a rough estimate of the mass, initial 

penalty and net benefit by extrapolating from prior autonomous designs.  

The most effective autonomous ankle exoskeleton to date (4) reduced the metabolic 

energy cost of walking by 10% compared to walking in normal boots. There was a 4.5% 

initial penalty for wearing the device on both ankles. The device weighed 1.06 kg per leg, 

including a 0.30 kg motor. Each exoskeleton produced a peak torque of 0.50 N m kg
-1

 and 

an average power of 0.15 W kg
-1

 per leg. A battery weighing 0.82 kg was carried in a 

backpack. In the present study, the optimized control law reduced metabolic energy cost by 

24% on average compared to the zero-torque condition. Optimized assistance required a 

peak torque of about 0.76 N m kg
-1

 and an average net power of about 0.38 W kg
-1

. We 

could obtain an estimate of the mass of a device capable of this mechanical output by 

extrapolating from (4); we could scale motor mass with average power, the mass of the 

remainder of the device with peak torque, and battery mass with total average power, 

noting that only one exoskeleton would require battery power. We could then obtain an 

estimate of the resulting initial penalty by either scaling it directly or using the relationships 

provided by (50), in either case accounting for the fact that the exoskeleton was worn on 

only one ankle. These approaches would suggest that scaling the hardware from (4) and 

applying optimized control could yield a substantially larger net improvement in metabolic 

cost (sample calculation in Study Data). It would be necessary to fabricate and test the 

scaled device to verify this idea. Nonetheless, the optimized control laws discovered in this 

experiment seem to have relevance to autonomous device design.  
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Additional Single-Subject Studies 

We demonstrated the generality of the approach by conducting single-subject studies 

with different devices and objectives in several additional locomotion conditions. Tests 

included minimizing metabolic energy consumption during slow, normal, fast, uphill and 

loaded walking, minimizing metabolic energy consumption during running, and 

minimizing muscle activity during walking. The methods in these tests were identical to 

those used in the main experiment, described above, except for a few noted differences.  

The six additional optimizations of metabolic rate were conducted using a different 

ankle exoskeleton, which was worn on both ankles rather than just one (fig. S4). These 

exoskeletons have structural differences from the device used in the main experiment, 

including a smaller overall envelope, a closer fit to the limb and less compliance in 

inversion-eversion and internal-external rotation (30). Using an exoskeleton on both legs 

presents strong differences from using an exoskeleton on only one leg, with differing 

implications for gait symmetry, inter-limb coordination, balance control, minimum step 

width, and maximum possible assistance, among other factors. In these experiments, both 

the left and right exoskeletons used the same control law. 

One new participant (Subject 12; table S1) with no prior experience using an 

exoskeleton underwent optimization and validation under five new walking conditions: 

slow, normal, fast, uphill and loaded walking. The slow walking test was performed at 

0.75 m s
-1

. The maximum allowable peak timing was increased to 59% stride time in this 

condition, to allow for the longer double-support period of slow walking, and the 

optimization was run for eight generations, which we found was required for 

convergence. For the other walking conditions, the parameterization and number of 

generations were identical to the main study. The normal walking test was performed at 

1.25 m s
-1

. The fast walking test was performed at 1.75 m s
-1

. The treadmill was inclined 

to a 10% grade with a speed of 1.25 m s
-1

 for the uphill walking test. The subject wore a 

weighted running vest (V-Force) with a mass of 19.4 kg (20% body mass) and walked at 

a speed of 1.25 m s
-1

 for the loaded walking condition. Validation trials were collected 

immediately following each optimization, with five minute periods of rest between trials. 

Validation conditions included walking without the exoskeleton, walking with the 

exoskeleton in zero-torque mode, and walking with optimized assistance. Each validation 

condition was performed twice and the order of the validation trials was block 

randomized (ABCCBA). The two normal walking trials were presented either first and 

last or third and fourth such that the exoskeleton was only donned and doffed one 

additional time. 

Running tests were performed on one participant who also completed the main 

experiment (Subject 2; table S1). For the running test, the torque trajectory had identical 

nodes, but the timing parameters were defined differently. Peak torque, τp, was defined as 

in the walking study. Peak time in the running study, tpr, was defined as a percentage of the 

active period of the device, ta, similar to the stance period, rather than as a percentage of 

stride. The active period, ta, was the time between foot flat and 42% of the average stride 

time, which was measured online. Foot flat was defined as the moment after heel strike at 

which the ankle joint velocity crossed zero as sensed by the exoskeleton joint encoder. The 

onset and removal of torque were set by the time of onset, ton, and time of removal, toff, 

which were also defined relative to foot flat, rather than relative to the time of peak torque. 

Peak time, tpr, was constrained to be between 20% and 75% of ta. Onset time, ton, was 
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constrained to be between 0% and (tpr - 0.20·ta). Removal time was constrained to the range 

(toff + 0.20·ta) to (0.95·ta). Peak torque was constrained to the range of 20 N m to 55 N m. 

We initialized the optimization with [τp, ton, tpr, toff] = [35 N m, 25, 55, 85]. Running 

validation trials included two trials of optimized assistance and zero-torque and one trial 

with normal running shoes without the exoskeleton, with block randomization. 

Optimization with muscle activity as the objective was performed on one new 

participant (Subject 13; table S1) with no prior experience using an exoskeleton. The 

exoskeleton, walking conditions, and optimization and validation methods were identical 

to the main experiment, with the exception that the objective was to minimize muscle 

activity rather than metabolic rate. Muscle activity was quantified as the root mean square 

of the processed electromyography signal taken from the lateral aspect of the right soleus 

(the largest calf muscle, which acts to plantarflex the ankle joint) during the stance phase. 

The exoskeleton therefore assisted the same joint from which muscle activity was 

measured. During optimization and validation, the signal was filtered with a high-pass 

second-order Butterworth filter with a cut-off frequency of 20 Hz, full-wave rectified, 

filtered with a low-pass second-order Butterworth filter with a cut-off frequency of 10 Hz, 

and then normalized to the peak of the average trajectory from normal walking without 

the exoskeleton. This processing approach was chosen to be consistent with 

electromyography techniques in other studies (19). Stance phase was determined using 

the heel switch and ankle encoder during optimization trials, and using ground reaction 

forces during validation trials. The root mean square (RMS) of soleus activity during 

stance was calculated for each stride independently, then averaged. In optimization trials, 

steady-state muscle activity was estimated as the average value from the final one minute 

of each condition. During validation, steady-state muscle activity was defined as the 

average from the final three minutes of each condition. Values in cf. Fig. 4 are 

normalized to the RMS value from normal walking without the exoskeleton.  
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Fig. S1. Metabolic rate estimation period versus estimate accuracy.  

Estimating steady-state metabolic rate from a longer period of transient respiratory data 

for each control law leads to lower estimation error. We chose a duration of two minutes 

so as to strike a balance between accurate estimation for each control law, which should 

lead to better guesses at optimal control parameters and fewer evaluations before 

convergence, and shorter duration, which leads to less walking time per evaluation. Data 

shown are from all validation trials in the present study. The fitting procedure described 

in Metabolic Rate Estimation was applied to increasing amounts of breath-by-breath data 

and the corresponding estimates of actual metabolic rate were calculated. Error was 

defined as the difference between individual estimates and the value obtained using all 

six minutes of breath-by-breath data from the same condition, and then normalized to the 

same value. Mean error is black, median is blue. Maximum, mean and median error 

based on two minutes of data were 15.5%, 4.3% and 3.7%, respectively. In future 

algorithms, computational efficiency might be improved by allowing trials to have 

differing durations. For example the evaluation of bad control laws could be terminated 

early based on a rapid, high-variance estimate of the cost (52). This would be particularly 

easily implemented in optimization procedures like CMA-ES, in which only cost rank is 

used rather than the exact cost value.  
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Fig. S2. Photograph of the experimental setup. 

The exoskeleton emulator system consists of: (1) a large off-board motor, actuating one end 

of a Bowden cable; (2) a tether, comprising a Bowden cable for transmitting mechanical 

force from the motor to the exoskeleton, and electrical wires for transmitting sensor 

information from the load cell, ankle joint encoder and heel switch to the control computer; 

(3) an ankle exoskeleton worn on the right leg in the main study (cf. Fig. 2D; fig. S3), or 

ankle exoskeletons worn on both legs in most of the single-subject studies (fig. S4); and  

(4) a real-time control computer that measured sensor information, computed desired ankle 

exoskeleton torque based on the control law being tested, and sent motor velocity 

commands to the motor drive to achieve the desired torque. Participants walked on (5) an 

instrumented split-belt treadmill with (6) emergency stop buttons for both the treadmill and 

the exoskeleton while wearing (7) a safety harness to prevent falls and (8) a wireless 

respirometry system, consisting of a mask and small backpack, to measure metabolic rate. 

The experimenter used (9) an interface computer to control the treadmill, set low-level 

control parameters, record data, start and stop the optimization, and set control laws during 

validation tests.  
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Fig. S3. Photograph of the ankle exoskeleton used in the main experiment. 

The exoskeleton was worn on the right ankle. A load cell at the end of the ankle lever 

measured tension in the drive rope, which was used along with the length of the ankle 

lever arm to calculate exoskeleton torque. The ankle lever arm was made from fiberglass, 

forming a leaf spring that increased series elasticity between the motor and the ankle joint, 

which can improve torque tracking. A rotary encoder at the exoskeleton ankle joint was 

used to measure joint angle. A contact switch inside the heel of the shoe was used to 

sense the instant of heel strike at the beginning of the stride. The exoskeleton design is 

described in more detail in (30). A self-adhering sports wrap was used on the leg beneath 

the shank strap to prevent slipping and to improve comfort at the interface. The Bowden 

cable tether was routed to the side of the knee and hip joints, such that flexing of the 

cable corresponded to joint rotation, which minimizes interference with normal leg 

movements (35). The tether was routed away from the body to leave enough room for 

normal arm swinging, which also plays an important role in economical gait (53). The 

tether was supported by rubber bands attached to the handrails of the treadmill. The 

exoskeleton was integrated with a running shoe, and the matching unaltered shoe was 

worn on the other foot. Shoes were swapped out to accommodate participants of varying 

size, from 1.60 to 1.88 m height. 
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Fig. S4. Metabolic cost of walking for individual subjects in the main study.  

Optimized assistance reduced metabolic rate compared to the zero-torque condition for 

all subjects, with an average reduction of 24.2 ± 7.4% (t-test: P = 1·10
-6

; N = 11) and a 

range of 14.2-37.9%. Optimized assistance led to lower metabolic rate compared to the 

static condition for eight of eleven subjects, with an average reduction in metabolic rate 

of 5.8 ± 6.2% (t-test: P = 0.01), ranging from a 3.3% increase to a 16.5% reduction. 

Cases in which metabolic rate was lower with static assistance may be explained by 

similarity between static and optimized control laws for these participants combined 

with noise in the measurement of metabolic rate. Bars are means of net metabolic rate 

from each presentation of conditions in double-reversal validation trials.  
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Fig. S5. Photograph of the ankle exoskeletons used in single-subject studies. 

The exoskeletons used in most single-subject studies had strain gages on the ankle 

levers to measure applied torque. These exoskeletons had no series springs and relied 

on compliance in the Bowden cable tether, shank straps and heel rope to provide series 

elasticity. Rotary encoders at the exoskeleton ankle joints were used to measure joint 

angles. Contact switches inside the heels of the shoes were used to sense the instant of 

heel strike at the beginning of each stance period. The exoskeleton design is described 

in more detail in (30). Self-adhering sports wraps were used on the legs beneath the 

shank straps to prevent slipping and improve comfort at the interface. In the running 

study, additional sports wraps were used over the shank strap to increase resistance to 

downward migration. The Bowden cable tethers were routed to the side of the knee and 

hip joints, such that flexing of the cable corresponded to joint rotation, which 

minimizes interference with normal leg movements (35). The tether was routed away 

from the body to leave enough room for normal arm swinging, which also plays an 

important role in economical gait (53). Tethers were supported by rubber bands 

connected to the handrails of the treadmill. 
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Fig. S6. Optimized exoskeleton torque patterns for single-subject walking studies. 

(A) Optimized bilateral ankle exoskeleton torque patterns for slow, normal, and fast 

walking. Slow walking (0.75 m s
-1

) resulted in optimized control parameters with almost 

zero torque: [τp, tp, tr, tf] = [4 N m, 51%, 30%, 8%]. During validation, we included the 

initial control law to allow direct comparison with the optimized control law; energy cost 

was 22% higher with the initialization parameters, confirming that driving the torque to 

zero improved metabolic energy cost at this speed. Normal walking (1.25 m s
-1

) resulted 

in optimized control parameters [τp, tp, tr, tf] = [52 N m, 55%, 26%, 10%]. Fast walking 

(1.75 m s
-1

) resulted in optimized parameters of [τp, tp, tr, tf] = [66 N m, 52%, 30%, 11%]. 

(B) Optimized bilateral ankle exoskeleton torque patterns for uphill and loaded walking. 

Walking uphill on an inclined treadmill (10% grade) resulted in optimized control 

parameters with later onset: [τp, tp, tr, tf] = [57 N m, 55%, 13%, 10%]. Loaded walking 

(20% body weight carried in a running vest) resulted in optimized control parameters of 

[τp, tp, tr, tf] = [52 N m, 53%, 33%, 12%]. Solid lines are measured torque of the right 

exoskeleton, normalized to stride time and averaged across strides. Measured torque of 

the left exoskeleton was nearly identical. Optimized torque patterns varied widely across 

walking conditions and spanned a large portion of the allowable space.  

  

A B 

0

1.0

0.2

0.4

0.6

0.8

To
rq

ue
 (N

 m
 k

g-1
)

0 20 40 60 80
Time (% stride period)

100

Slow walking
Normal walking
Fast walking

Uphill walking
Loaded walking

0 20 40 60 80
Time (% stride period)

100



 

 

21 

 

Fig. S7. Optimized exoskeleton torque pattern for the single-subject running study. 

Optimized control parameters were [τp, ton, tpr, toff] = [55 N m, 7%, 75%, 95%]. The solid 

line is measured torque of the right exoskeleton, normalized to stride time and averaged 

across strides. Measured torque of the left exoskeleton was nearly identical. This pattern 

of torque had a much earlier onset than the optimized patterns for walking. 
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Fig. S8. Results from the single-subject study on minimizing muscle activity. 

(A) Optimized ankle exoskeleton torque pattern when the objective function was muscle 

activity. The optimized parameters were [τp, tp, tr, tf] = [58 N m, 44%, 35%, 17%], which 

encodes a substantially earlier onset than when optimizing on metabolic rate at this speed. 

The solid line is measured torque, normalized to stride time and averaged across strides. 

(B) Processed electromyography (EMG) patterns for normal walking without the 

exoskeleton, walking in the zero-torque condition, and walking with optimized assistance. 

Data are from the soleus on the same leg as the exoskeleton. Solid lines are processed 

electromyography patterns of the lateral aspect of the soleus, normalized to stride time 

and averaged across strides. Data are normalized to the peak of the average pattern for 

normal walking without the exoskeleton. The magnitude of the electromyography pattern 

was substantially reduced during the stance period when optimized exoskeleton 

assistance was applied. 
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Fig. S9. Check of convergence to optimized metabolic rate. 

We performed a test of convergence with a subset of participants (N = 8) in the main study 

by continuing the optimization for an additional four generations. Additional optimization 

did not lead to further reductions in metabolic cost; energy cost with the convergence-check 

control law was slightly higher than with the optimized control law (1.9% difference 

compared to zero-torque; paired t-test: P = 0.03) and optimized parameters changed little 

(table S3). Bars are means, error bars are standard deviations.  
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Fig. S10. Results for experienced versus inexperienced participants. 

Participants with prior experience using an exoskeleton (N = 5) seemed to obtain greater 

improvements in energy economy compared to inexperienced participants (N = 6). Prior 

exoskeleton experience seemed to result in lower optimized metabolic rate, with an 

average reduction compared to the zero-torque condition that was 7.3% larger, although 

the comparison was not statistically significant (unpaired t-test: P = 0.1). This suggests 

that longer-term adaptation, neural reorganization or even growth might play a role in 

maximizing the benefits of exoskeleton assistance. Bars are means, error bars are 

standard deviations.  
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Fig. S11. Exoskeleton mechanical power. 

Metabolic rate was negatively correlated with net exoskeleton power during optimization and 

all optimized control laws encoded substantial net exoskeleton power in the main study, 

suggesting that positive net power may be a common component of optimal ankle 

exoskeleton assistance for these gait conditions and participants. However, net power was not 

maximized during optimization, and static assistance resulted in higher net mechanical power 

than optimized assistance for all participants (0.45 ± 0.09 W kg
-1

 vs. 0.38 ± 0.11 W kg
-1

, or 

23% higher; t-test: P = 0.006; N = 11) but also resulted in higher metabolic energy cost. 

Optimizing assistance was therefore not equivalent to maximizing net exoskeleton power, 

even for an average controller. Net power with optimized control also varied greatly across 

participants, ranging from 0.25 to 0.54 W kg
-1

. Both of these findings are inconsistent with 

the theory that the net benefit of an assistive device equals the balance between the net 

mechanical work provided and the cost of carrying added mass, sometimes called an 

‘augmentation factor’ (4). (A) Scatter plot of metabolic rate versus net exoskeleton power, 

defined as the integral of instantaneous ankle exoskeleton power over the stride divided by 

stride period, normalized to participant body mass, for all control laws tested during 

optimization trials in the main study. We observed a correlation between net exoskeleton 

power and metabolic rate for all but one participant. On average, this relationship explained 

about 24% of the variance in metabolic rate. Note that this is not a strong test for a 

relationship between metabolic rate and mechanical power because the power values arise 

from a separate process that also affects metabolic rate. (B) Positive and negative mechanical 

power, defined as positive or negative work per stride divided by stride period, normalized to 

body mass, measured during the optimized control law condition in validation trials. 

Optimized assistance encoded substantial positive power for all participants, but the 

magnitudes varied widely. Some optimized control laws encoded negative mechanical power, 

but most were associated with little dissipation. Net mechanical power values for all 

conditions are available in Study Data.  
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Table S1. Participant characteristics. 

Relevant characteristics of all study participants.  

 

Participant Gender Body mass (kg) Height (m) Age (yrs) 
Exoskeleton 

experience 

 

Main Study 

Subject 1 F 57 1.63 28 NO 

Subject 2 M 80 1.84 37 YES 

Subject 3 F 50 1.60 27 NO 

Subject 4 M 83 1.88 22 NO 

Subject 5 M 86 1.80 28 YES 

Subject 6 M 70 1.73 26 NO 

Subject 7 F 68 1.78 26 YES 

Subject 8 F 59 1.68 24 YES 

Subject 9 F 55 1.65 32 YES 

Subject 10 M 65 1.80 24 NO 

Subject 11 M 93 1.88 25 NO 

Mean ± SD 6 M, 5 F 69.6 ± 14.1 1.75 ± 0.10 27.2 ± 4.2 5 Y, 6 N 

 

Single-Subject Studies 

Subject 12 M 97 1.93 22 NO 

Subject 13 M 77 1.75 25 NO 
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Table S2. Experimental protocol for the main study. 

Protocol details for each participant. In validation order sequences, ‘O’ refers to the 

optimized condition, ‘Z’ refers to the zero-torque condition, ’S’ refers to the static 

condition, ‘C’ refers to the convergence-check condition, ‘P’ refers to the pre-reset 

condition just before reset (Subject 6 only), and D refers to the alternate-day validation 

check (Subject 8 only). In single-subject studies, participants completed each gait 

condition in one day, with four generations of optimization (eight for slow walking) 

followed by the double-reversal random-order validation tests on the same day, including 

optimized, zero-torque and no exoskeleton (and initial parameters for slow walking). 

Please see Materials and Methods for details. 

 
 

Participant Day Protocol description 

Subject 1 Day 1:  

Day 2: 

 

Day 3:  

 

 

Optimization (2 generations) 

Optimization (2 remaining generations) 

Convergence check (3 additional generations) 

Convergence check (1 additional generation) 

Validation (order: ZSCOOCSZ) 

 

Subject 2 Day 1: 

 

Day 2: 

 

 

Optimization (4 generations) 

Validation (order: ZOZ) 

Convergence check (4 additional generations) 

Convergence validation (order: CZSSZC) 

Subject 3 Day 1: 

Day 2: 

Day 3: 

 

Optimization (4 generations) 

Convergence check (4 additional generations) 

Validation (order: ZSCOOCSZ) 

Subject 4 Day 1: 

 

Day 2: 

 

 

Optimization (4 generations) 

Convergence check (1 additional generations) 

Convergence check (3 additional generations) 

Validation (order: ZSCOOCSZ) 

Subject 5 Day 1: 

Day 2: 

Day 3:  

 

Optimization (4 generations) 

Convergence check (4 additional generations) 

Validation (order: ZSCOOCSZ) 

Subject 6 Day 1: 

Day 2: 

Day 3: 

  

Optimization (4 generations) 

Reset optimization (4 generations) 

Validation (order: ZSOPPOSZ) 

Subject 7 Day 1: 

 

Day 2: 

Day 3:  

 

Optimization (3 generations) 

Convergence check (1 additional generation) 

Convergence check (4 additional generations) 

Validation (order: ZCSOOSCZ) 
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Subject 8 Day 1: 

Day 2: 

 

Day 3: 

Day 4: 

 

Optimization (2 generations) 

Optimization (3 remaining generations) 

Validation (order: ZOZ) 

Convergence check (3 additional generations) 

Convergence validation (order: ZSCDDCSZ) 

Subject 9 Day 1:  

 

Day 2: 

 

Optimization (4 generations) 

Convergence check (1 additional generation) 

Validation (order: SOZOS) 

Subject 10 Day 1: 

Day 2: 

 

Day 3:  

 

Optimization (4 generations) 

Continued optimization (5 addl. generations) 

Reset optimization (4 generations) 

Validation (order: ZSOOSZ) 

Subject 11 Day 1: 

Day 2: 

Day 3: 

  

Optimization (4 generations) 

Convergence check (4 additional generations) 

Validation (order: ZSCOOCSZ) 
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Table S3. Validation trial settings and outcomes for the main study. 

Control law settings used in validation trials, with the corresponding measured metabolic 

rate. Metabolic rate is the average of both double-reversal presentations. All data are 

available in the Study Data file archive. 

 

 

Participant 
Control law parameters , ,[ ],p p r ft t t  

[N m, % Stride, % Stride, % Stride] 

Metabolic rate 

(W kg
-1

) 

Subject 1 Zero torque: 

Static:  

Optimized:  

Convergence check:  

 

N.A. 

[46.3, 53.0, 17.0, 8.0] 

[43.5, 50.1, 19.1, 13.2] 

[46.6, 51.3, 18.3, 11.8] 

 

2.28 

1.65 

1.59 

1.59 

 

Subject 2 

 

 

 

Zero torque: 

Optimized: 

Alt-day zero torque 

Alt-day static:  

Alt-day conv. check:  

 

N.A. 

[67.5, 50.1, 29.6, 11.8] 

N.A. 

[65.3, 53.0, 25.0, 10.0] 

[66.2, 50.8, 25.4, 9.7] 

 

2.66 

2.12 

2.71 

2.31 

2.19 

 

Subject 3 Zero torque: 

Static:  

Optimized:  

Convergence check:  

 

N.A. 

[40.8, 53.0, 16.8, 8.0] 

[31.9, 52.8, 21.2, 6.23] 

[26.6, 51.3, 13.6, 10.5] 

 

3.06 

2.96 

2.63 

2.77 

 

Subject 4 Zero torque: 

Static:  

Optimized:  

Convergence check: 

  

N.A. 

[67.4, 53.0, 17.2, 8.0] 

[52.0, 52.6, 27.4, 11.0] 

[49.8, 51.1, 27.6, 10.2] 

 

2.89 

2.56 

2.46 

2.48 

 

Subject 5 Zero torque: 

Static:  

Optimized:  

Convergence check:  

 

N.A. 

[70.5, 53.0, 17.2, 8.0] 

[72.8, 49.9, 24.5, 10.3] 

[71.7, 50.0, 34.0, 12.7] 

 

2.68 

1.96 

1.97 

2.01 

 

Subject 6 Zero torque: 

Static:  

Pre-reset:  

Optimized:  

 

N.A. 

[57.1, 53.0, 17.2, 8.0] 

[32.5, 54.9, 22.1, 9.42] 

[56.1, 49.2, 11.7, 12.8] 

 

3.12 

2.31 

2.41 

2.38 

 

Subject 7 Zero torque: 

Static:  

Optimized:  

Convergence check:  

 

N.A. 

[55.5, 53.0, 17.2, 8.0] 

[56.0, 48.4, 25.3, 14.8] 

[52.7, 51.2, 25.1, 13.7] 

 

3.18 

2.26 

2.30 

2.31 

 

Subject 8 Zero torque: 

Optimized:  

N.A. 

[49.9, 50.0, 32.8, 14.7]  

3.69 

2.65 
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Alt-day zero torque: 

Alt-day static:  

Alt-day optimized: 

Alt-day conv. check:  

 

N.A. 

[48.1, 53.0, 17.0, 8.0] 

[48.2, 50.6, 33.6, 13.8] 

[53.6, 49.5, 33.5, 15.4] 

 

3.54 

2.79 

2.88 

2.94 

 

Subject 9 Zero torque: 

Static:  

Optimized:  

 

N.A. 

[44.9, 53.0, 17.0, 8.0] 

[47.2, 48.5, 23.2, 15.9] 

 

2.68 

1.99 

1.67 

 

Subject 10 Zero torque: 

Static:  

Optimized:  

 

N.A. 

[53.0, 53.0, 17.0, 8.0] 

[45.3, 51.1, 22.8, 13.1] 

 

2.39 

1.98 

1.74 

 

Subject 11 Zero torque: 

Static:  

Optimized:  

Convergence check:  

 

N.A. 

[75.9, 53.0, 17.4, 8.0] 

[67.8, 51.2, 17.7, 11.8] 

[58.5, 51.6, 13.7, 11.0] 

 

2.66 

2.41 

2.25 

2.39 
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Table S4. Quadratic approximations of the energy cost landscape. 

For each participant in the main study, we used metabolic rate estimates from all control 

laws presented during the optimization phase of the experiment to conduct a model-based 

offline optimization. We assumed a four-variable quadratic function without interactions, 

1 2 3 4 5 6 7 8 9

2 2 2 2
p p p p r r f fE c c c ct t t tc c c c t ct        , and solved for the coefficients, 

1 2 9[ ]c c c , that resulted in the least squared error. We then identified the quadratic 

model-based estimate of optimal parameter values, limited to the range of allowable 

parameter values. This constraint was frequently encountered, because many of the 

quadratic approximations had negative coefficients on quadratic terms. We then 

calculated the percent error of the estimated optimal values, defined as the difference 

between the quadratic model-based estimate of the optimal parameters and the 

experimentally optimized parameter values, divided by the range of allowable values. 

Average errors were [24%, 16%, 21%, 37%]. 

 

Participant 
Quadratic 

approximation 
R

2
 Model optima 

Error 

(% of range) 

Subject 1 2

2

2

2

0.0012 0.0576

0.0008 0.1224

0.0035 0.1427

0.0099 0.2313

9.8160

p p

p p

r r

f f

t t

t t

t t

  

 

 

 


 

0.7 

 

[56.5, 55.0, 20.5, 11.6] 

 

[23, 11, 5, 11] 

Subject 2 2

2

2

2

0.0005 0.0587

0.0023 0.2708

0.0012 0.0516

0.0035 0.0996

14.4496

p p

p p

r r

f f

t t

t t

t t

 

 

 

 



  

 

0.5 

 

[58.5, 55.0, 21.0, 14.2] 

 

[11, 11, 29, 16] 

Subject 3 2

2

2

2

0.0006 0.0330

0.0055 0.5585

0.0001 0.0027

0.0002 0.0118

18.9850

p p

p p

r r

f f

t t

t t

t t

 

 

 

 



 

 

0.2 

 

[27.5, 50.5, 11.0, 5.0] 

 

[9, 5, 34, 8] 
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Subject 4 2

2

2

2

0.0001 0.0116

0.0002 0.0168

0.0018 0.1058

0.0013 0.0513

7.4808

p p

p p

r r

f f

t t

t t

t t

 

 

 

 



 

 

0.5 

 

[68.5, 55.0, 29.5, 19.4] 

 

[20, 5, 7, 56] 

Subject 5 2

2

2

2

0.0004 0.0419

0.0011 0.0359

0.0000 0.0057

0.0016 0.0731

3.5803

p p

p p

r r

f f

t t

t t

t t

  

 

 

 


 

0.7 

 

[2.0, 55.0, 10.0, 20.0] 

 

[82, 11, 48, 65] 

Subject 6 2

2

2

2

0.0004 0.0298

0.0057 0.6132

0.0003 0.0099

0.0016 0.0771

20.6465

p p

p p

r r

f f

t t

t t

t t

  

 

 

 


 

0.7 

 

[2.0, 54.0, 40.0, 20.0] 

 

[44, 2, 60, 71] 

 

Subject 7 2

2

2

2

0.0001 0.0169

0.0032 0.3511

0.0007 0.0299

0.0004 0.0228

14.6816

p p

p p

r r

f f

t t

t t

t t

 

 

 

 



 

 

0.8 

 

[66.0, 55.0, 21.5, 20.0] 

 

[15, 15, 13, 35] 

 

Subject 8 2

2

2

2

0.0001 0.0373

0.0033 0.3434

0.0004 0.0293

0.0010 0.0241

14.7401

p p

p p

r r

f f

t t

t t

t t

 

 

 

 



 

 

0.8 

 

[59.0, 52.5, 36, 20.0] 

 

[18, 4, 8, 41] 
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Subject 9 2

2

2

2

0.0006 0.0485

0.0062 0.6346

0.0013 0.0610

0.0035 0.1297

21.9363

p p

p p

r r

f f

t t

t t

t t

 

 

 





 

 

0.7 

 

[41, 51.5, 23.5, 18.2] 

 

[11, 7, 1, 15] 

Subject 10 2

2

2

2

0.0003 0.0115

0.0027 0.1986

0.0002 0.0092

0.0014 0.0142

1.3776

p p

p p

r r

f f

t t

t t

t t

  

 

 

 


 

0.5 

 

[65.0, 10.0, 28.5, 20.0] 

 

[30, 91, 19, 46] 

Subject 11 2

2

2

2

0.0011 0.1334

0.0048 0.5456

0.0006 0.0187

0.0029 0.1004

24.0035

p p

p p

r r

f f

t t

t t

t t

 

 

 

 



 

 

0.7 

 

[63.5, 55.0, 14.5, 17.6] 

 

[5, 8, 11, 39] 
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Study Data (separate file) 

Complete study data are provided in the file archive StudyData.zip. Data from both the 

optimization and validation phases of both the main experiment and single-subject 

studies are found in the Matlab archives MainStudy.mat and SingleSubjectStudies.mat. 

Optimization data include subject, generation number, generation mean, trial day, control 

law parameter values, net mechanical power, root mean square muscle activity, and 

estimated steady-state metabolic rate, as appropriate, for each control law tested. 

Validation data include subject, condition name, control law parameter values, net 

mechanical power, average measured exoskeleton torque trajectory, muscle activity 

trajectory, root mean square muscle activity, and estimated steady-state metabolic rate, as 

appropriate, for each condition tested during validation. The readme.txt file provides a 

more detailed description of the file structure and examples of how to access and process 

data. Matlab code in the sample_processing.m file demonstrates how to access and 

process study data, including recreating all outcomes and figures from the main study and 

single-subject studies reported in the main text and supplementary materials. 

 

Optimization Code (separate file) 

Sample versions of the code that comprise the optimization method are provided in the 

file archive OptimizationCode.zip. Included are sample scripts for applying parametric 

constraints and generating torque curves, estimating steady-state metabolic rate from 

breath by breath data from each control law, and applying the CMA-ES algorithm to 

determine the next generation of control laws to test. Code is provided in Matlab format, 

with instructions and descriptions as comments within each file. 
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